

Data.tron [3 SXGA+ version] (2007-09)
by Ryoji Ikeda

Issue 31

©2013 Jim Schofield
Words Jim Schofield
Design Mick Schofield

www.e-journal.org.uk/shape

Shape Journal
Bild Art
11a Woodlands Road, Lepton
West Yorkshire. HD8 0HX UK

Shape Journal
Issue 31

Programming Today:

1. Introduction

2. Code Red for the Users?

3. Red for Danger

4. C++ and the Philosophy of Mathematics

5. Painting by Numbers

6. Too Many Notes

7. Postscript: Diversionary Motives?

Editorial31

Introduction
Notes on Code Red

Welcome to issue 31 of the SHAPE Journal.

This is another unusual set of papers! And to address the
problems involved, the author has had to include several
fairly long-in-the-tooth articles that were, in their time, and
still are, among the clearest that are available concerning
key issues involved in Programming Languages.

There is one from 1998, and another from 2003, and I have
to admit that several topics raised in these papers show their
ages, via many of the pieces of ancillary kit and software
packages that are no longer in use (or even remembered).
But, these historically-defined details do not, in any way,
undermine the general points made, for the causes for
these diversions are still with us to this day. So, the dated
references have not been removed or replaced.

In addition, in discussing the pros and cons of programming
that were raised in Michael Brooks article Code Red in
New Scientist (2920), it became evident that Computer
Languages, as such, were unavoidably imbued with certain
incorrect, and diverting assumptions carried over mainly
from Mathematics (and to a lesser extent from Science
itself), which certainly guarantee that certain vital natural
processes and indeed, developments, are unobtainable,
within the confines of these entirely formal means.

So a short paper has also been included, that at least begins
to address this problem in some detail too.

The historical papers on C++ and Flash (Actionscript),
may be referring to older versions of these systems, but
the points made are still to this day, entirely valid, and I
also couldn’t just ignore Michael Brooks’ evident lack of
any real understanding in the area of programming and
Programming Languages, without delivering a strong
criticism of his position. Publishing these papers has
allowed me to do just that.

Jim Schofield July 2013

The first thing to make absolutely clear, about this article,
is that Brooks knows nothing about the creation of any
of the many kinds of software produced by qualified
professionals in this particular area. He is, at best, an
amateur user of it as a replacement for his typewriter, and
thus he is in no position to be able to fathom the crises that
have in the past, and still to this day, beset this increasingly
important area of human activities. I can only compare his
uninformed judgements with those of politicians drastically
re-organising Education, with a similar lack of the requisite
knowledge to do anything but make it worse.

Hence his contribution has to rely upon fragments or one-
liners from those who do have the necessary expertise,
or from other users like himself. And as a professional in
this area myself, I can say that all the experts quoted from
were clearly “computer nerds”. Their discipline is really
all they know, and their expertise is in “extending” and
“improving” that body of knowledge and techniques. And,
as with mathematicians, who do the very same things in
their own realm, they merely develop the techniques
involved in their own terms alone.

They do NOT import ever-new problems, requiring new
solutions to widen and deepen their discipline. They
exploit the ever-new, technological advances, of quite a
different group, who are basically electronic engineers, to
“solve” the problems of others, incapable of doing it for
themselves – but only if the techniques are already in their
armoury.

I always remember going for interview for a post in a
Scottish University, and was asked by the interviewer,
“What is your problem?”. I assumed he wondered what
was causing me difficulties, but, of course, he meant what
was I researching within Computing. When I understood
what he was asking, I explained that I was primarily
interested in inter-disciplinary developments, where
an intrinsic knowledge of the problems to be addressed
in other disciplines, could only be tackled by computer
specialists willing to subordinate their own “problem
areas” to serving the detailed needs of the other discipline,
for, in my experience, the most profound developments in
I.T. were invariably achieved in such situations.

But, my interviewer was singularly unimpressed. Though
as the following 25 years was to prove, he was significantly
mistaken!

Clearly, the biggest problem in I.T. is the inwards-
turning, and indeed parochial attitude of those within that
discipline. They treat all problem-solving techniques as
“general” – as independent of the area of application, and
THIS is, without doubt, the most crucial source of their
difficulties.

This deflection of appropriate lines of development, and
a preoccupation of ”doing something new” in computing,
has led to Brooks’ main problem – “Which language do
I choose to learn?” He explains that he cannot learn to
program until he knows which of thousands of computer
languages he should conquer. But, that is a perfect example
of “the cart before the horse”. Choosing the language
cannot come first!

What is programming for? Surely, it is to employ the
power and speed of a computer to tackle a difficult, time-
consuming or onerous problem. Once you have your
important problem, your choice will be made for you. For,
if you know what it is that you wish to use, in an area
important to you for other reasons, you then search for a
program in that precise area, either doing exactly what you
want, or something very close. Having found appropriate
programs, you THEN know, immediately, which language
you will have to learn – for a majority of your finds will be
in it. All the exemplars you unearth in your search are in
an area you know about, and are confronted with finding a
large number of programs to study.

Experience has proved that such a starting point, makes
learning the language involved very much easier, AND
crucially, having got one of the revealed set to work, the
adjustments required to make it deliver exactly what you
require will be much easier. In no time at all, you will
have written a successful program, based upon someone
else’s initial form, but tailored by you to do what you need.
Thereafter, you tackle new problems and with appropriate
searches find helpful examples to deliver what you need.

Code Red for the Users?
From What Ground Should We Criticise I.T.?

This is a first detailed response the Michael Brooks article “Code Red” in New Scientist (2920), concerning crises in
computer software. There is also a second paper, which takes a more philosophically critical line under the title “Red
for Danger: Beware the I.T. specialist”, which takes a critical stance from the inside by an ex-Director of Information
Technology at London University.

Surprisingly quickly, you are conceiving of programs of
your own, and learning new features of the language as
you go. The excuse of too many computer languages is a
get out!

Also, the venom Brooks finds on the Internet, about the
best and worst computer languages, is no good reason
for doing nothing. All such languages will do significant
things. Until you actually try to implement something,
you will never be in a position to judge. For, most of that
venom is parochial – “I know this language, and all the
others are rubbish” – or the most unhelpful of all – “They
are all rubbish!”

Using an ancient language - Algol, I quickly found that
I could do literally anything. And the various versions of
BASIC are quite adequate for most tasks.

In 1989 I won a British Interactive Video Award – a UK
National award, for a multimedia package written for a
BBC B Computer using BASIC to control what was then
the latest technology Video material on a Philips Laser
Disc.

So, just find a program that is concerned with something
you know about, and attempt to understand it. It is much
easier than you think!

Finally, Brooks feels that all languages are poorly designed,
so it is impossible to get into them. Again, Not so! And, for
some reason he is talking about the languages mostly used
in modern Systems Programming – the most difficult area:
and NOT the place to start! He clearly doesn’t know about
languages that are similar to spoken languages – the so-
called Procedural Languages. And the low-level primitives
that are utilised by all higher level languages.

In 1989 I used the widely-employed, Interpretive Language,
BASIC, but wedded to a library of “mouse primitives”
off the Internet (very easy to use, and supplied with full
instructions) and with these implemented a program that
BASIC (at that time) couldn’t do. Indeed, the best compilers
and interpreters now allow insertions of machine code or
assembly language primitives, within an easy, high-level,
main program.

I used to teach Programming at a Further Education
College via a year-long course that cost just a few pounds,
and literally everyone could program something that
worked well within just a few weeks. You build up your
knowledge by concentric subsets as further facilities
become necessary.

Stay well away from “codey” languages, for they are
designed expressly for computer nerds, and are frequently
impenetratable for non-specialist programmers!

Ordinary mortals, initially at least, just want to solve a
problem, so procedural languages are best.

Brooks next addressed the tragedy of modern programming,
which our uninformed commentator puts down to the “poor
nature” of programming and programming languages.
Once more, this is NOT the case! He omits the lazy cut-
and-paste approach, wherein programs are essentially
merely collages of other peoples coding. Sometimes,
of course, you cannot avoid it, as what you offer up to
a compiler or interpreter is usually replaced by blocks of
ready-made code, of which you don’t have any idea what
the programmer (or programmers), who wrote it, had in
mind. In the case of so-called interpreted languages, and
those with plug-in libraries, this is the norm. The majority
of any program that you may write will make your personal
contributions seem like a winkle-on-a-whale of prewritten
blocks, sometimes of enormous size. Debugging what you
write may not solve an evident problem. It is likely to be
someone else’s code, not only inaccessible to you, but also
uninterpretable by you, if revealed.

Well, what caused this mess? You did! By wanting to
program without doing it all yourself. The writers of
systems code attempted to do it all for you - it would
be their code that actually did the work. Your enclosing
“shell” program merely accessed these enormous blocks of
code. It was this attempt at making the writing of programs
easy that meant you couldn’t adjust anything below your
superficial “calling shell”, sitting on top!

The argument for the proliferation of languages must
therefore be put down to the variety of applications, and
the tailoring of languages to particular sets of problems,
in a given area. And, this was a positive reaction to the
repeatedly failed attempts to produce a single, general, do-
everything language, which was good enough to answer
everyone’s needs. For, to attempt to deliver that would
require enormous amounts of already-written blocks of
code.

The example of the language PL1 is usually put forward
as just such a do-everything language, but it, and others
of the same ilk, always failed by being too big: to cover
absolutely everything, the number of commands and
forms, not to mention ready-made code had to be so
considerably increased, as to make the language, and its
various ancillary subsections and libraries, both much too
big, and much too slow. It would include multitudinous
tests for options that would never arise in any particular
limited purpose for individual programs written in it.

So, the culture switched over to the direct opposite, and
new languages, dedicated to a particular area, would,
henceforth, be tailor-made for it, and these proved to be
much smaller and faster, and delivered a limited set of
options extremely quickly.

Thus, many of the proliferation of languages were produced
for this very sound reason, and you certainly don’t have to
choose from the enormous overall set at all. Querying a
search engine to find something like what you need, will
deliver solutions written in a much smaller set of languages,
designed to tackle your very type of problem.

But, it must also be admitted, that many of the enormous
proliferation of languages are produced to earn doctorates
involving entirely original research, and, of course, nothing
is ever as original as an entirely new language. Yet even
this will be clarified by how many people thereafter use
the new language. In the suggested search for programs
that may do your particular job, you will see large numbers
in one or two languages, and just one or two in each of
many other languages. You, of course, go for the popular
languages in your area. The task of which language to use
shrinks by the minute!

An example, of how complicated this is supposed to make
programming, is given in the Michael Brooks article, by
a certain Alex Payne, when he informs us that “Facebook
alone uses C++, Java, PHP, Perl, Python and Erlang among
others”. But, this is a red herring: decent programming
systems universally allow the inclusion of code in other
languages, which have already solved common problems,
and which can merge them in seamlessly, as long as
the communicating parameters are clearly known and
appropriately presented Indeed, it is because they make
programming much easier, that such a mix has been made
possible. But, this does mean that more and more of your
program was actually written by someone else: someone
who you have absolutely NO access to.

The supposed hidden errors in those “foreign blocks” of
code, are supposed to represent a major problem, but they
are included so that the programmer didn’t have to do it
for himself. And, it must be said, that most of these are so
universally used, that they are after quite a short period,
are made particularly free from errors.

Of course, if the programmer (looking for an easy path)
included the wrong optional code, it may well not do what
he thinks it will, and the supposed error in the code, could
well turn out to be the error of using that option lazily, and
without due care, checks and even test programs to clarify
exactly what it does.

But there are also other things to be considered.
All High Level Languages take the underlying primitive
functions as read: they are hidden within the code, and are
not usually accessible from the high level itself. But, in
a world in which new things need to be controlled, with
input devices such as mice and touch-screens, and even
to very unusual controlling of external systems delivering
Streaming Video footage and many more (particularly
in my own specialism of Computers in Control), which
necessarily involve the patching-in of many new primitives,

these require a language that can do this, and hence provide
a means for the high level forms to access and use such
required new blocks of low level code.

Some of these can be done for you, and made available as
libraries. But, the real High Level Languages have to have
the methods to integrate and access these. The problem
is always to attempt to do everything within a single
language, and this imperative inevitably led to languages
that were intended to do so. But, they became much less
fathomable and much more codey in consequence, Finally,
the problem could never be effectively solved by a single,
do-everything language. Such ambitious constructions
invariably got too big, and gobbled up vast amounts of
computer memory. And, in addition they can only be the
products of many hands and extensive teams, and led to
“the left hand not knowing what the right hand doeth”.
Too much is unknown about the overall package, for the
writer(s) of a particular update, or correcting patch, for the
full consequences to be understood, and therefore guarded
against.

It is like the Theorems of Mathematics, which people try to
remember, and invariable have misconceptions along with
the bits they get right. As a professional mathematician
myself, I never even tried to remember them all, but I
knew how to derive them. Even in exams, I always used
to derive them from scratch, and in so doing, not only
got the required formulae right, but also so familiarised
myself with the area, that the use-part of the set problem
was straightforward to deliver.

But, you can’t do that with modern-day-programming:
there are simply too many, along with insufficient skills
for everyone to do that. Often, it is better to do as much
as possible yourself to avoid these difficulties. And this
does work! Believe it or not, I could develop a package
from scratch in a fraction of the time that was required to
achieve the same outcome by a team, and knowing every
part of what I had written, debugging and safely correcting
errors was always achievable.

Now, Brooks’ article attempted to illustrate the possible
solutions to all the above-described difficulties of computer
languages. The initially suggested answer was to lay down
a Master, Do-Anything Language, but the usual way of
arriving at a consensus – The Academic Conference, failed
miserably to come up with a universally agreed design.
For one thing, such an undertaking would scupper ten
thousand half finished doctorate theses, and not a few
careers. Such a Conference always became a battleground!
Yet, when just such a Conference was convened to decide
on the form of such a language, it descended, as usual,
into the same parochial chaos, and was guaranteed to be
yet another failure, until one group revealed that they had
already produced what was required, which was called
Algol. Immediately, everyone scrambled to try out the new
form.

Why do you think that so many important gains are made
by the military?

It is because they know exactly what they need, and lay
it out in the clearest possible way. The producers don’t
do what they think the military need: they do what the
military say. It isn’t that the military are better; it’s just that
they are in sole charge, and refuse anything that doesn’t
deliver to their specific definition. And, in my specialist
area – Computers in Control, working with a wide range of
disciplines, it was exactly what the users required, which
determined what was sought by them, and delivered by
me. So it’s no good asking those who are trying to establish
their status within the Information Technology area: you
must ask the users, and after you have informed them that
it could-not-be-done, you then had to set about delivering
it. NOT, as is usual, with some already existing technology,
but instead working out exactly what facilities they needed,
and finding wholly new ways to deliver them.

But, such a route was usually abandoned, and one possible
solution to the problem of finding and correcting errors
(considered to be a much more important task) was one
similar to the gobbets of programming that occur in the
cells within Spreadsheets. If a language was produced that
had a similar overall form corrections and adjustments
would be considerably easier to cope with. For the cells
in such packages, can not only contain numerical values,
or character strings, but also small pieces of code referring
to the contents of other cells, so that when new data was
entered into the appropriate cells, the code in another cell,
which refers to these, is automatically and immediately
updated, so you can see immediately the effect of your
new entries. Similarly, changes in the code in a cell, will
immediately deliver the effect upon data by that change.

Thus, a new language, or a new compiler for an existing
language, but supplied with such a cell-structure, so that
all changes would be available as soon as they had been
included. It would be like a built in Trace, and checking the
accuracy of your new code would be considerably easier.
But, not all programming can be force-fitted into that
kind of template. None of mine, always involving in-and-
out communications with external kit would ever fit that
paradigm.

Jonathon Edwards (MIT) has started upon such a language
(for web applications), which he calls Subtext. It remains
to be seen how successful he will be.

And, several other researchers have attempted similar
means of showing the consequences of changes as they are
made. Chris Granger’s Light Table effectively gives easy
access to all consequent effects (as if they were all on your
desk in front of you, and updated as you make changes.)
One proposed solution was for computers (via an
interpreting piece of software) to write the programs
themselves in response to a series of questions posed by

the person requiring a program. The person who suggested
this was Christa Lopes, who asserted that the answers to
all such questions are there already.

I’m afraid not!

It could never work for a series of reasons. First all the
suggested FAQ responses can only answer with the most
commonly appropriate answers, and these will not always
be correct.

Secondly, on what basis would these be linked into a
program? It could only be based upon Formal Logic and
the assumption of the Principle of Plurality.

Finally, the overall purpose could never be communicated,
and hence no defined context could be inferred.

You would get a program, but the chances of it doing
anything NEW would be absolute zero. It could only
be entirely retrospective and with a Lowest Common
Denominator remit.

Mistakes in the article in New Scientist (2920) entitled
Code Red by Michael Brooks, were clearly signalled,
amazingly, in excerpts from its first and last paragraphs
which admitted:- “It’s time I taught myself how to
program”, and terminally, “There’s hope for me yet!”

I’m afraid not, Michael, for to program a computer is
not merely an acquired skill, for to do anything at all
worthwhile, you have to be a very different animal, than
one who only knows how to code situations that he can
do by hand into a given Computer Language. For such
are termed “hacks” and given the very lowest ranking and
payment in computing circles. The next layer up are the
Systems Analysts, who designed the packages that made
possible the delivery of effective, practical programs,
While the top experts were considered to be those who
designed what are termed Systems Software – Operating
Systems or Computer Language Compilers (translators
into machine code).

BUT, beyond all of these Pure I.T. skills, there is another
higher calling: they are the consultants who know (or know
how to find out) the imperatives and indeed the necessities
of individual disciplines to be served NOT in the usual
generalist way, but by means of wholly new functions that
computers, for the very first time have made it possible to
address.

This computer expert (I finally achieved the post of
Director of Information Technology in a College of London
University, went through all these layers, and ended up in
the type of role I have just described as the highest and
most demanding) DID NOT merely apply generalist
methodologies to various disciplines, but instead immersed
himself into each discipline, so deeply, that he began to
devise discipline-dependant functions and the facilities to
carry them out.

For such turn out to be very rare animals indeed, and are
very unlikely to be of the same ilk as most Computer
Specialists. For, they must always be the respectful servers
of the discipline that requires their aid, and no common or
garden computer techie will ever fit the bill. For, they will
be too general in their approach, and treat all disciplines
alike as requiring the same powerful general packages. On
the contrary, these experts will find wholly new features
and facilities in the served discipline, which would never
be discovered by know-it-all generalists.

But, as can be seen from the above paragraphs, the insider-
ranking system within computer departments and in the
usual, generalist-serving companies, have time and again

proved wholly inadequate to special disciplines, which
are capable of generating entirely new functions, and
need people capable of creating them. The parachuted-in,
generalist computer-buffs or even self-taught amateurs
have proved to be hopelessly constrained in what they can
deliver. The real stuff can only be delivered by those with
a wide experience in many very different disciplines, who
know that they must first make themselves subservient
to the discipline experts, will spend a great deal of time
understanding the objectives and methods, and only then
gradually match what they profoundly understand in their
own area to that of the discipline experts, and then together
develop wholly new and radically transforming I.T systems
based soundly upon the core of the served discipline.

Now, my wide experience of Information Technology
Departments in Hong Kong, Glasgow and London,
has made it clear that such consultant experts are NOT
produced.

Perhaps, I should reveal myself, having moved about quite
a bit in a career (in computing) of well over 40 years, I
spent several decades aiding and abetting Higher Education
discipline experts, who sorely needed tailor-made software
to facilitate, and indeed develop, the research they were
doing in their specialist areas.

Such researchers already knew what they needed to do,
but it generally never involved computers, nor the usual
administrative sets of Office-type packages. They were not
what was required.

Now, retrofitting of Databases, Spreadsheets, or even
Communications Packages would simply NOT suffice.
They invariably wanted something that was particular to
their discipline and current methodology, and no visiting
“expert” could ever furnish what was really required.

The usual prototype of “helpful intervention” was
demonstrated very clearly in Dance, when “helped” by a
Computer Science Department from a prestige University in
Spain. Having seen the efforts of this expert (Jim Schofield)
the Spanish Computer Department were convinced they
could do much better, and a substantial team led by senior
members of the Department was assembled to “show how
it ought to be done”. They knew all the main functional
areas and how the write efficient code to deliver them, and
as far as they could see, it was merely a task of fitting their
templates to this department’s needs.

But, it didn’t work: none of the programs that were delivered
addressed the real problems of the Dance Department.

Red for Danger
Beware the I.T. Specialist!

What they did produce involved all sorts of up-to-the-
minute-methods, and allowed all sorts of manipulation of
video materials. But, they had no idea of what the Dance
people wanted to do with the footage, and addressed none
of the difficulties of the staff members, student dancers and
certainly gave zero aids to choreographers. The key tasks
of presenting, interpreting or even designing appropriate
movements were ignored. The most basic learning of
correct and expressive dance movements were impossible
with the facilities that the I.T. experts delivered. “I can’t
see what is happening with her left elbow in your footage”,
dancers would justifiably complain. “How am I supposed
to balance? For the transition into that movement is
simply unclear” And also you would frequently hear, “The
orchestration of her limbs, and the consequent transition
into the next phrase is ambiguous” “I can’t tell what I am
supposed to do: should I just try various alternatives, and
choose what I think is best?” No!
In interpreting an exemplar piece, and indeed modifying it
due to inadequate information, you are no longer learning
from the experience of the choreographer, but inserting
alternatives from the student’s much more limited
experiences. You can’t do that!

Clearly, these computer experts had no idea what the
real problems within the discipline were. Had they never
watched the usual methods of animateurs communicating
what they actually knew from previous performances of
the same piece? The I.T. product, which they produced,
in spite of its brilliance as a piece of programming, was
useless as an aid to teaching Dance, its intended function.

And, if the reader perhaps thinks that Dance is a very
special case then I must disagree. In a period of 10 years,
aiding discipline experts from many different areas, I can
say that such problems were indeed the norm. It was only a
very basic set of “admin-routines” that could be addressed
in the way these experts were doing.

The use of computers (especially in control), to aid in almost
all disciplines, could only be achieved by learning sufficient
of that discipline, and constantly allowing the experts
to complain and disagree, that the correct and effective
marriage could ever be brought to consummation.

The Spanish software justifiably vanished without a trace.

Now, that crucial aspect was not all that was necessary to
characterise the ideas and products of Computer Studies
Departments. Rather than becoming flexible and wide
students of all disciplines, so as to be in a position to
make a significant contribution, the members of such a
Department felt that they had to make their contributions to
computer software as such. And, if you limit your “telling
contributions” in that way, you are very likely to invent
and then implement a “better” Computer Language.

The 2,000 or more languages, that surprised Brooks, were
mostly the product of that dominating imperative, and only
rarely made things better overall.

Indeed, as a long-time writer of computer software in many
languages, I can confirm that even the earliest products,
like Algol and Fortran, were more than capable of doing
literally anything. And, most importantly, were much
easier to debug – to reveal and correct the errors made.
A simple case will prove my point: A Department of
Computing in an English University (many years ago)
was developing software to reveal the electron “orbits”
involved in molecular combinations, and used an enormous
computer, and all the latest techniques and software to
do it. The final success was lauded in the Journals, and
the Department accrued a great deal of credit from their
achievement. Yet, a colleague of mine, whose degree had
been in Chemistry, but who I had recruited into Computing,
used Algol and a small obsolete, mainframe computer, and
achieved exactly the same thing, by himself, and in a very
short period of time. He was, of course, in possession of
all the understanding, as a chemist, to provide everything
that was essential from that side, and his new-found skills
in Programming could be effectively marshalled to very
efficiently produce what was needed. The real achievement
of the University experts was in their own discipline –
Computing, and NOT in the discipline their software was
designed to aid.

Our culture, and particularly that connected with computers
is most definitely Technology-led, and that doesn’t only
mean in the speed or miniaturisation of the kit involved, but
also in the techniques and methods developed in software.
It is very inward-looking. The nearest equivalent to this
constituency must be that of the mathematicians, who also
develop their discipline in its own terms to the utmost, so
that the level of abstraction takes them inexorably into
Singularities, multiple dimensions, not to mention Parallel
Universes.

Why? It is because their discipline allows them to do it.
Yet, they firmly believe that the relations and formulae,
that are their bread and butter, will enable all problems, in
all areas of Reality, to be solved. But, by the very nature
and methods of their discipline, they only work within the
World of Pure Form alone, and never in concrete Reality
as such. How can they solve anything that is quite firmly
within the all-embracing world of concrete Reality?

1.1 Overloading - Overt Generality & Hidden Detail

The most interesting feature about C++ is the facility
called function overloading. This, on the face of it, seems
only to allow quite different functions to have the same
name, but, there is a great deal more to it than this.

First of all, this isn’t as confusing as it might sound,
because WHICH function is used at any given point in the
program, is dependant upon the context in which you call
it so that (if you do your work correctly) the appropriate
one is called when needed.

What then is the advantage of using the same name? Why
shouldn’t we use different, or modified, names for each
different case? Well, yes and no! If all functions are named
differently the situation can become very confusing. A
collection of functions covering the same sort of processes
- a family likeness set of functions, if you like - would
each have to have a different name, showing , on the one
hand the family likeness, and on the other, each subtle
difference. Any naming convention to deliver all this
information, would need to be complicated, and STILL
could lead to confusion.

Take the situation of a complicated package with a series
of different, but related, treatments of certain data. If all
alternative treatments have different versions of the same
name, you actually have to remember ALL the detail to be
sure you are picking the right one at any time.

The advantage of having the same name is that you don’t
have to sort through a large number of alternatives to call
the correct version. Afterall you MUST be setting up in
order to process a PARTICULAR case at any one time in
the programming, and this CONTEXT structure can be
made to CHOOSE the appropriate version. The code that
deals with each case then becomes IDENTICAL in the
CALLING part, and only the appropriate conditional tests
need be concentrated upon.

This turns out to be a much more organised way of dealing
with such situations, NOT ONLY for a single programmer,
but most especially when a team of programmers are
producing the package, and different individuals are
dealing with the various alternative cases.

In addition, this overloading allows you to think at a
higher level = the details are dealt with at a lower level -
WITHIN the individual function, while at the higher level
they are covered by a single function name - A SINGLE
CONCEPT!

1.2 Operator Overloading

Similarly, certain OPERATORS can be overloaded. The
clearest example is with such operators as +. This can
be made to mean numerical addition, concatenation of
strings, or even complex procedures such as matrix , or
vector addition.

What happens is that you define your special operations
when you deal with them in detail, when you are addressing
the particular requirements of that special case.

Now the above description, though correct, does not do
justice to the concept of overloading. What makes the whole
thing so powerful is the feature of C++ called OBJECT
ORIENTATED PROGRAMMING. More will be said
about this elsewhere, but for the purposes of describing
overloading let us briefly explain the functionality here
and now.

Object Orientated Programming arose out of the feature
in C called Structures (structs), where sets of variables
were grouped together under a single name. Because of
this whole structures of information could be dealt within
a clear and simple way. What became clear is that such
structures ALWAYS required their own functions to
process them, and a very powerful advantage could be
achieved by GROUPING the functions AND the variables
TOGETHER in one definition. This grouping was called
a CLASS.

It should be coming clear why this was so important. Within
a particular class, with its own data structures and functions,
it would be nice to DEFINE also its own OPERATORS to
manipulate these structures. Adding WHOLE structures
together could be achieved by OVERLOADING the
addition sign (+), to do this.

1.3 Top Down & Bottom Up

So now, when you are looking at the structure in a TOP
- DOWN way - an overall way - a place holder single
NAME, or a placeholder single OPERATOR will cover
different functionalities, while providing a conceptual
level for what is being done.

At first I wasn’t particularly enamoured of this feature, but
I believe that it can be helpful to programmers, perhaps the
majority when writing code.

C++ and the Philosophy of Mathematics
1: Aspects of C++

I have a long standing hobby horse about programming
which is related to this discussion. It is about the strategies
of top-down and bottom-up in writing programs.

It has been the received wisdom for a long time now that
programming should be designed top-down and anything
that facilitates this is to be recommended. The above
discussion on overloading definitely concurs with this
principle. It facilitates a top-down approach.

In spite of differences that will be encountered in a
programming task when the detail is addressed, at a
higher (and EARLIER) level of work, PLACEHOLDER
(generalised) function names will help the programmer and
avoid the “can’t see the wood for the trees” problem that
can certainly come from a purely bottom-up approach.

This is all true, and particularly appropriate in (for
example) commercial programming environments, when
the tasks, are mostly those that HAVE BEEN DONE
BEFORE. Maybe its a database, or a payroll, or a financial
balance sheet, or whatever. The DETAIL may be different,
new facilities may be being brought in, BUT the general
approach - the concepts involved - is going to be the same,
and a generalised top-down structure in the coding will
enable large chunks of previous code to be re-employed
and the task becomes one of fitting these ready mades
together in a top down way, with a sub task of “differences
in the detail” - the LOWER LEVEL FUNCTIONS in any
NEW features that are being added, and will fit into the top
down structure.

In addition, the top-down approach enables large teams of
programmers to work together, or even NEW groups or
individuals to re-use existing code to MAXIMISE its use
in “infinite variations on a theme”.

Also, as long as the code delivers the functionality required,
original uses (or should I say REMIXES) of the code can
be developed. The limitations are that
 1. you accept the code as it is
 2. you accept the implied top-down forms

The best example is the Windows environment, and
particularly the multimedia MCI drivers with their standard
interfaces. These allow software writers to harness the
multimedia functionality directly into their code.

ASIDE: A discussion of this really needs to investigate
whether these are used as much as they should be. My own
experience does not confirm that this use is very common
- though I may be wrong . Maybe ActiveX technology is
being used in this way for games - though if this is the case
I can see NO innovative uses being developed in my area
of research, multimedia and Dance.

Hopefully, I will be able to add a great deal more to this
part of the discussion after my current investigations into

C++ and VFW, XTRAS, Xing, RealImage and Director
Plug-Ins. If I manage to write the code I require and if I get
a good handle on Plug-Ins, (Media Mogul & others) then I
will be able to fill out these points much more fully.

Now, my position is different to the consensus in ONE
very important area. That is when the programming being
undertaken is in completely original work - research work
- never before attempted or even thought of.

Areas where new techniques and inventions are unavoidable,
where entirely new ways of dealing with things, new and
very different demands made on functional facilities, and
where new aggregations of these sets of functions are
required, CANNOT be tackled in a top-down way, at least
in the crucial and formative stages of development. Top-
Down methods ASSUME that you ALREADY HAVE the
solution in a general form.

In the special circumstances of real innovation that I have
outlined, certain work HAS to be approached from a
bottom-up direction. Detailed problems with NO, as yet,
clearly defined solution, have to be tackled FIRST.

In my experience, innovatory software is generally a see-
saw approach oscillating between bottom-up and top-down
approaches, AND, what is very important here is that the
FORM of the top-down approach is ALSO INNOVATORY,
and could not have been commenced BEFORE the
inventions and techniques had been developed during the
bottom-up investigations.

If this is so, then a purely top-down approach COULD
NOT deliver truly innovatory software solutions to
problems, but would be essentially RETROSPECTIVE.
You could say that the approach is ideal for mediocrities
doing rehashes of well established tasks, using as much
ready made material as possible. Perhaps that is a bit
harsh. Though, in a very important sense, it is true. In my
own work, which is innovatory, I seem to get little help
from facilities, libraries and even packages & operating
system facilities.

I would even say that if top-down methods are insisted
upon, it is certain to be CONSERVATIVE in the top-down
approaches used. That is NEW top down approaches
will meet great resistance and incompatibility from the
established methods.

As I have said before, if it is bottom-up solutions that
lead to NEW problems, and these need to be solved by
INNOVATION in the form of top-down methods. then
the insistence on starting from (established) top-down
methods, EXCLUDES this innovatory process.

Once a new software technique has been made available
- the vast majority of use of it is top-down, and the form
of the top-down use is usually “cast-in-concrete” within

the package or the tool which delivers the technique. All
products have the stamp of the tools used.

This is because it is usually so difficult to BEND the
functionality to original aims. You do what the package
let’s you do! Your top-down forms are constrained to those
available in the package - if no alternative uses were realised
in the course of the programming of the package, then you,
the user, wont be able to do them, even though it should be
possible, given what the original authors achieve - that is
the lower end functionalities must be there, BUT you cant
get your hands on them. In addition, very useful lower end
functionality which could very easily have been provided,
if your new use had been considered, DON’T EXIST and
are not really feasible, for immediate implementation, IF
EVER!

1.4 The Connection with Abstraction.

Now this aside is taking one important aspect of the
philosophy of C++, but there are also many connections
and similarities (and differences) with the philosophy of
mathematics, about which I have been writing elsewhere
in these notes. This is the role of Abstraction, and will be
taken up later.

2: C++ and Mathematics

Let us attempt to relate the overloading of functions,
operations etc. in C++ with the switching of formal elements
between levels and context that occurs in mathematics.

The simplest place to start is probably in the overloading
of operators. Elsewhere in my notes I have discussed at
length the regular extension of the concept of number,
to allow the extension of the whole system of operators
and number functions to other areas with “similar” formal
relations. In effect the overloading of operators in C++ is
directly comparable with this. Such operators as + can be
extended to apply to vectors, matrices or what have you in
BOTH.

Also in both, to be able to immediately be in a position
to think about the whole set of operators available in one
area, but perhaps applicable in another, is a very powerful
conceptual approach. and (in the case of C++) if you have
made damn sure that the detail of a new use for common or
garden operators has been thought through and implemented
unambiguously (in when it should be applied), then you
are free to “lump them together” in thinking at a higher
level (The famous top-down approach).

There are similarities again with mathematics in that
mathematicians do not “willy nilly” use operators in a new
situation. They also define new rules and procedures for
their “overloaded” extensions to number theory.

It is clearly a formal question! A question of levels.
Mathematicians (and perhaps all of us), prefer to make
new areas “fit in” with their already thoroughly studied
and greatly used techniques. It is easier to add extra rules,
constraints and exceptions to the already established, than
to insist that, because of differences, the new area must be
partitioned off. It is also, I may say, a SOUNDER approach,
because you are trusting to the formal architecture
ALREADY established, rather than assuming that things
must be different and contradictory.

History has proved the efficacy of the mathematicians
approach, though the always reappearing crises of
mathematics, are also based on this assumption.

This may sound contradictory, but it is also true!

ASIDE: It is clear that as the procedures in C++ that
we are discussing here were being developed and
implemented, ambiguities did appear and things did go
wrong. Corrective procedures and special representations
were then developed, which (surprisingly) tended rather
to be against the general philosophy, in that CONTEXT
labels have become more and more necessary to remove
ambiguity (e.g. Date:: etc. class labels).

In addition, a proliferation of seemingly redundant symbols
have become necessary to tighten up the meaning of certain
constructs, for example:

 date()

redundant parentheses in functions

 T &array <T> :: operator [] (int index)
 delete [] storage

opaque sequences of symbols

To an experienced programmer used to the old procedural
languages, the appearance of C++ coding was at first
meaningless.

In a real sense, it is very opaque! Perhaps the approach
(- a computer science approach, as distinct from the user
orientated approach) has led to a minimalist, very spare
and “symbol-flagged” form , where sequences of symbols,
in a given order and context, identify situations. It is the
reverse of the old “English-like” languages (COBOL etc.)
- [though I must say the interminable forms of COBOL
used to bore me to death]. It is much more akin to low level
languages in this respect, though, of course, its Object
Orientated Approach and hierarchical functions make it
much less like assemblers and the like!

For the Initiated Only!

One particular aspect of C++ that I find very interesting, is
its inaccessibility. No-one, who isn’t a very competent and
experienced programmer, would make head nor tail of it.

It seems to take PRIDE in its inaccessibility. It is almost
an initiation! A separation of US from THEM. The real
computer scientists from the amateurs. The experts from
the users.

If anyone had decided to invent a language that would be
impenetrable - a secret language for initiates only - then it
would be very like C++.

You have to “learn the rules”, “know the ropes” and some
of them are directly opposed in form to the more usual
methods in the procedural languages, and also it is very
“codey”.

Example: The use of begin and end in the earlier languages
has been carried over to [], and the normal uses of
parentheses (), have been shared between {} braces,[]
brackets, <> pairs of inequality signs, and () parentheses
themselves, and some of the sequences of these are quite
off-putting (see examples above).

JS (1998)

Painting By Numbers
Jigsaw Programming

Modern Authoring Systems – A Boon to Programmers?

Having just wasted a vast amount of time struggling with
ActionScript programming in Flash MX, I couldn’t help
but wonder why? Well, I am sure that computer “nerds”
of all types will smilingly inform me that it is because I am
either too “thick”, too-long-in-the-tooth, or simply stuck
in my old-fashioned ways to cope with the latest state-of-
the-art tools. But the prejudices of youth tell us nothing. If
anything they tell us more about the judges than the judged.
My own credentials can be assessed by the fact that I have
been forced to learn new authoring systems for each of my
last four multimedia packages. Packages which have, each
in turn, been generally agreed to be the industry-leading
resources in my area of interactive media for the teaching
of Dance. NOTE: My first multimedia project won an
award at the BIVA event in Brighton in 1989.

The trouble is that the current generation of authoring
“systems” are supposed to make the job easier. The crucial
question must be, “Easier for whom?” Personally, I have
a great deal of trouble with software, that expects me to
“work purely from examples”, or even take “ready-made”
chunks of code “on trust”. I need to understand “Why?” to
be able to realise what might be possible with the current
tool. Patchworking together ready-mades is no good to
me. The truth is that such methods are NOT intended for
the professional, at all, but for the “amateur”. If the user
is merely “remixing” previously solved tasks into some
conceptually well-tried undertaking, and, considers the
creation of original and creative code to be not-for-them
- then , this sort of tool is ideal. If, on the other hand, the
user’s purpose is to invent, wholly new software facilities,
then such tools are a major disadvantage, because the-
building-is-determined-by-the-bricks.

Do What I Do

No real explanations are given along with such tools! No
structured teaching is involved. (I think I will have to
repeat that – no structured teaching is ever involved with
such systems!). To those who insist that I have got this
wrong, and that lots of help is instantly available, let me
assure them that being led by the nose through individual
examples is NOT structured teaching. It is “do-what-
I-do” training. It almost never leads to a real grasp of
what is going on. It involves no attempt at explanation.
It, at best, allows dedicated “nerds” to pack their brains,
(remembering rather than understanding), with a multitude
of techniques that work. – “Who needs to know why?”

Problem–led Software Facilities? – “Not Today Thank
You!”

My proof of this is that whenever I approach such people
with a new problem, they invariably insist “You shouldn’t
be trying to do that. You should be doing this!” They find
such problem-led creative computing to be a pain in the
ass. They get more than a little upset if you insist upon
addressing the problem defined OUTSIDE OF their
preferred computing field. The only discipline-led projects
they are interested in are computer-situated projects. I have
witnessed innumerable so-called “joint” projects with all
sorts of intelligent partners with fascinating requirements,
which have rapidly turned into vehicles for the computer
buffs to display their own totally dis-embodied computer
skills, and which have totally failed to address the actual
real-world problems which were the impetus for the
partnership in the first place.

Jigsaw Programming and Painting by Numbers

Let us dig a little deeper into these “revolutionary” tools.
The most significant facility in these scripting systems
is undoubtedly “Object Orientation”. This facility
allows new users to use previously written, second-hand
scripts, and simply use them in a completed and handed
down form. Collisions of names used (for variables, for
example) doesn’t matter (we are told), because such tools
also allow so-called “overloading” and the names are all
local to the individual objects used, and , as long as we slot
in the definitions – as given, and fill in the “blanks” of the
given template, all should be well. Understanding these
pre-formed building blocks doesn’t seem to be a necessary
part of the process. “Painting-by-numbers” programming
using given chunks of jigsaw-code seems to be the rule.

Of course, such methods are fine for amateurs or hacks,
doing what has been done thousands of times before
– where only the names need to be changed (to protect
the innocent?) For, hack programmers simply doing yet
another standard application will rejoice at such facilities.
Merely re-filling the parameters with appropriate values
or variables is sufficient. The trouble arises when the
programmer needs to invent – to do something new – to
develop new methods and techniques, and stretch the
authoring system up to (and beyond) the limits laid-into
the bricks to be used. Such work is generally scuppered by
systems such as the type I have been describing. They do
what they do. And I suppose that is what the vast majority
of users want them to do.

Everyday Tools for Everyday Tasks

These are certainly NOT development systems for creating
original techniques. If you want to do a simple database, a
catalogue, or a standard accounting job, these ready-mades
are fine. But, I am trying to write state-of-the-art techniques
in handling quality, full-screen video tailor-made for the
teaching of Dance. Such techniques do NOT yet exist.
Predicated, as they are, on full-screen, full-motion video,
with detailed and accurate controls, the possibility of adding
value, and of extracting qualities from the source video for
revealing display in new and informative ways, all these
methods have to first be invented, and then implemented.

Most of my career has involved resorting to levels in
programming – when particular primitives are not available,
you write them yourself at some lower level (assembly
language or whatever) is appropriate. Alternatively, you
search around for the facilities you require in 3rd party
software, and move around between the various tools to
bring together the required functionality. Sometimes, you
acquire 3rd party Plug-Ins, to enhance your main software
tool, and bring to it the required additional features.

New Media, New Methods

Before the new amalgam of video, computing and
pedagogy, it was impossible (at any reasonable cost) to
deliver the sort of added-value resources that are possible
now. Over the last few years many new innovations have
been conceived and delivered by the author in this area.
Perhaps the most effective was Historical Equal Interval
Still Sequences (called HEISS), which addressed the
contradiction between Dynamism and Context in studying
movement, and presented sequences of stills alongside
video materials to aid analysis. Subsequent developments
from this such as synchronised HEISS pathways were also
superimposed on top of the original video as either static
or even animated & synchronised overlays. Many other
techniques were developed to allow effective interaction
with the resources, without restricting the full-screen
requirement for the underlying video. They involved a
variety of Head Up Displays (HUD) for a wide variety
of options and effects.[HUD involve overlaid transparent
data and interactive buttons.]

All of these are original. You do not find these as ready-
made facilities in the scripting systems that I am talking
about here. You HAVE to write them yourself, and the
“helping-hand”, built-in methods of the scripting language
seem only to trip-up the serious programmer. After a
great deal of work, I have sorted out many of the “given”
(yet unexplained) templates, and have developed many
effective solutions to Dance-and -pedagogy problems that
were constantly presenting themselves, but the amount of
work was enormous. Why?”

Inadequate Teaching – Training is Retrospective

Because to create such facilities, you HAVE to understand
what is going on, so that you can effectively USE what is
available. Lack of any real explanations by the language
authors, caused erroneous assumptions on my part, and led
to a great deal of wasted time. Most of the time is spent first
understanding every line of code given as examples, and
then re-casting the elements of legal code into something
QUITE different. The debugging techniques available are
crude and interminable, and surprisingly old fashioned. In
today’s environment of power and speed in computers, you
would think that a second screen, with real time updates,
slow motion running etc. would be standard procedure by
now. But then that assumes that the tool is intended for
the professional programmer. It is not! It is intended for
the amateur, or the hack. And, you don’t spend enormous
amounts of time educating amateurs who only want to play,
or hacks delivering the same stock solutions, do you?

Inadequate Programmer’s Aids

More often than I care to think about, I have to note
things on paper, in order to have crucial values available
elsewhere in the code I am developing. For example, I
spent many hours constructing essential tables that relate
all the parameters, and show them simultaneously, and in
clear relationship to one another. Parameter presentation
tables would seem essential facilities to me.

Causes, Implications & Effects

If my criticisms are true, what are the implications for the
development of new techniques in information technology?
In contrast to the consensus view on this question, I
maintain that the consequence of this situation is not
unbridled change and innovation. On the contrary, I would
insist that the development of these tools is essentially
conservative and retrospective.

Why? It is because they let more people do old things. They
probably let them do these established techniques more
quickly too. But, the incessant thirst for innovation and the
“latest thing” (which is now a firmly established part of the
technological myth) is considered to be adequately fed and
entirely satisfied by speed and capacity. It isn’t radically
new techniques that are the motive force for sales, but
faster, more capacious devices – greater detail and image-
resolution etc. etc. In fact, really new ideas find it hard to
get a hearing. What gets taken up are contributions that “fit
in” with the consensus ethos, whereas new ideas are too
often considered to be either too challenging or even too
undermining. Now real progress does still happen, but it
isn’t in the mainstream. The really important developments
take place elsewhere. Usually, these are produced by
unknown players in small companies, and the process
of integration of their work into mainstream products is
painfully slow.

The developments almost always take place in spite of the
prevailing system NOT because of it. Generally, they get
taken on when the big players begin to feel threatened by
their much smaller competitors, who are then emasculated
by take-over or head-hunted to acquire their star
developers.

Backwards Development

If you find all this hard to believe, you will be even more
astonished by the following statement:

In some important areas the flow of facilities seems to be
backwards.

Important facilities in my field grow less and less instead
of more and more. While products get faster and more
capacious – much trumpeted – they simultaneously lose
vital facilities. In Dance Multimedia, (which, by the way,
requires very similar facilities to the whole range of sports
studies), the authoring technologies, and their associated
software tools have progressively deteriorated quite
significantly since the 1980s. When I started in the field, I
used Philips Laser Disc technology controlled by a cheap
“school-type” computer, and produced a pedagogic pack
that was good enough to win a national award in 1989.
Since then the facilities I took for granted (using the above
set up) were gradually cut down, in subsequent media
technologies and software, so that most of the innovative
techniques that I had developed were less and less possible.
The declining sequence was:
Laser DisC > CDi > CD rom

Appropriate Tools by Accident

And, it is only in the last few months that the facilities that
I used in 1989 are becoming available again – 13 years of
having to compromise instead of rocketing ahead!

And these new facilities are available almost by accident.
It turns out that the requirements of the “latest thing” –
the Internet – has driven the development of “new” tools.
The Internet is simply too slow! This godsend has failed
to deliver the promised goods, and short-cut solutions
had to be found. In addition, to at least give the illusion
of interaction and multi-parallel processes, it became
necessary to allow very “busy” screens – full of lots of little
independent animations doing their things simultaneously
on screen direct from the Internet. Now even these don’t
really work if all the resources are situated at the other end
of the Internet link. So, the whole philosophy of automatic
downloading of resources to the user’s own computer was
developed, not to mention the added value of “streaming”
– that is playing while still downloading. It was also
necessary to accelerate the speeds of user’s own Hard
Disks to co-operate in these new activities.

These imperatives may have helped the burgeoning internet
industry, but they have also returned to multimedia authors,
such as myself, the wherewithal to once again produce
quality pedagogical video based materials direct from CD
rom (or from a local Hard Disk) using applications such as
Director and Flash.

I use their tailor-made tools to give me the facilities I
have been missing since 1989. Our dance products using
these facilities are the best in the world, and we have
finally re-obtained the tools that are necessary in this
field. Interestingly, I have presented many papers on what
I considered essential for quality, pedagogic, multimedia
resources, AND the tools to produce them. I even wrote
extensive pieces, which I sent to Microsoft in Seattle – to
NO avail! Nobody was interested. It is ironic that with
everybody looking the other way, they have by accident
returned to me the facilities I have been demanding for
over a decade.

#
Dumbing Down?
The Consequencies of OOPS systems

If what I say is true about the current types of OOPS
(Object Orientated Programming) software systems, where
most users uncritically use blocks of code without any
real measure of understanding, then there are significant
consequences for the Information Technology Industry
(and , of course, its users – us).

First, we must assume that ever higher hierarchies of
“levels” of use will be built up, with each level knowing
little or nothing about the real content of the level below,
and of course, almost nothing about even deeper buried
levels. Now, before a mass of people jump up and protest
that you don’t have to be informed about the innards of a
radio, or a washing machine in order to use them, may I
ask a simple question? Can I ask if they also feel happy
with a situation where the man called in to fix such a
machine also knows little or nothing about the workings,
and suggests an immediate replacement? If you think
that such a scenario is far from the situation prevailing at
present, then read on!

IMPORTANT NOTE: One aspect of all this that is never
addressed, is the foundations upon which it it is all
constructed. Not only Programming, but Mathematics and
Formal Logic all depend upon the Principle of Plurality
for the whole standpoint and methodologies involved.
This reveals inself in Analysis, and Reductionism, which
can only be legitimate if extracted elements and relations
are entirely independent of context: we say that they are
separable as-they-are, and are not modified by context.

Now the above points made about the multiple uses of
blocks of code, is clearly related to these assumptions.
Are they too considered to be both separable and
independent of context? The alternative holist standpoint
insists that they are NOT separable, but are changed by
context. And all causalities are therefore not all bottom-
up, but also top-down and even side-to-side.

Minimal Understanding with Maximal Reach?

To return to programming – if my representation is true
then enormous amounts of code will become involved
in all implementations, in which NO individual author
goes beyond his or her own level, and most of the basic
code is hidden and never really analysed or understood.
Such a situation has a momentum of its own. Situations
have occurred before in the development of Information
Technology with important consequences – from do-
everything compilers that ground to a halt under their own
size, to “universal” solutions packed with inefficient code.
Of course, you may say that this could be true, but who
cares? At the rate of development of computer hardware
at the present time, such inefficiencies can easily be
compensated for by increased speed and capacity [You
can’t beat faith, can you?] But I’m afraid that no growth
process can be relied upon to give such regular rates of
improvement forever. Nor can layer upon layer of ever
increasing (and largely unknown) complexity be counted
upon to generate no problems of reliability – to be totally
sound, and unlikely to fail.

The Flight from Explanation

We must also couple this mounting bulk of hidden code with
the increasing flight from real explanation and teaching in
this and every other field at the present time. The consensus
is now that teaching is old hat. (I recently attended a
conference where a leading member of a government
funded organisation given the task of promoting Teaching
and Learning in the Performing Arts, who vigorously
upbraided me for asking for the discussion to get round to
the title of the current session – Teaching). The future, we
are told, will be carried forward with “learning” systems,
for example – the Internet, or in help files on disc. This
position has rapidly eroded to become the ancient method
of “Do-as-I-do”, where the writing of “training materials”
simply leads those trying to understand an area covered
by a piece of software, being led through step-by-step
sequences that give various standard results.

From Programmed Learning to a Compendium of
Particular Recipes

As Programmed Learning proved way back in the 1960s,
such methods cannot cover all eventualities. I was
working in this field then, and it became obvious that the
development of such comprehensive materials – attempting
to cover every possible case, rapidly became uneconomic.

In fact, the whole exercise was abandoned as impossible. A
team would take years developing materials covering every
conceivable eventuality, and at the end of an interminable
process, the result could be very easily criticised as
partial, or biased, or using limiting assumptions. What is
remarkable, and dangerous, about the emerging second
“era” of Programmed Learning, is that the new generation
of “trainers” don’t even attempt to address problems
generally. They simply proffer single sequences of actions
that address SINGLE problems, and give single results.
Such particular “training” sequences cannot be criticised
in the same way as the materials produced in the first
generation of PL in the 1960s, because each sequence only
attempts a single particular outcome. No attempt at deriving
concepts, or establishing an overall view is attempted.
Anyone should be able to follow an individual series of
simple instructions, so everyone should be able to achieve
the single objective! For other outcomes, the learner must
find other training sequences, and the whole approach can
only lead to thousands of particular examples. The job
of the learner becomes one of finding these (hence the
Internet) and trying them out. If one works, it can be added
to one’s armoury of techniques. The role of the learner is
to amass innumerable, black-box techniques with NO real
explanations or meaningful commentaries.

Such sequences of instructions are so devoid of significant
meaning that if the user doesn’t constantly use them, they
are forgotten, as they don’t fit into a matrix of understanding,
with cross-connections, and conceptual hooks. They are
not memorable. They are RECIPES!

The Deification of Arbitrary Memory

The amazing thing is that “nerds”, who incessantly use
these “solutions” every day, soon are regarded as “experts”.
Teenage boys, who spend vast amounts of the day (and
the night) “learning” sequence after sequence, are rapidly
seen as geniuses by the general public. Yet, whenever I
approach such people with an intractable problem in my
own researches (note that this invariably means that it is
unlikely to have been turned into a sequence of actions
for general use), I invariably get no help at all. In fact,
such “experts” admonish me for posing the problem in
the first place. They don’t solve problems: they remember
processes! Their “expertise” is in fact retrospective and
conservative.

Debugging & Help

I have recently tried to get up to speed on ActionScript (the
scripting language in Flash), (as mentioned earlier) and
quickly found that the manuals given with the software
were inadequate to my needs. They were catalogues of
innumerable definitions and processes, and did not allow
any real comprehension of the system as a whole. No
teaching was involved, only the provision of masses of
separate details. I also found the Help files accessible either

via the software, or on disc, or even over the internet to be
insufficient. In the end I was forced to buy FOUR, quite
thick books to supplement the Manuals and Help Files, But,
you have guessed it, they were ALL sequences of actions
to merely achieve the most common or garden results.
They were for amateurs or hacks doing ordinary things.
Real creative computing cannot be built out of an infinite
number of particular cases, but only out of conceptual
understanding. The number of things that are done with
such ancillary materials get narrower and narrower – not
least because long before any sort of comprehensive mass
of techniques have been generated, the software is super-
ceded. A new version, with new tricks is released, and the
whole process starts again. So, it becomes clear that there
will only be time to deal with the commonest problems in
providing appropriate “training”. I have a large library of
computer books that were essential for a short time, and
are now totally useless!

Extrapolation to Repair!

To look at the situation from a different angle, let us
consider hardware! I have a series of computers dedicated
to different purposes, and regularly in need of repair
support. “Repair your computer?” “No, we don’t do that!”,
I am told. It seems that any process involving testing and
diagnosis is not only time consuming, but also likely to
fail! All such processes are rapidly truncated with the
conclusion – “This Disk (or power supply, or mother-
board) is finished! You will have to get a new one”. It
seems that hardware put together in developing countries
can now be obtained so cheaply, that a quick profit is made
by simply trashing the old part, and replacing it with a new,
cheap import. If, by any chance, such a procedure leaves
you without crucial data, then you are forced to agree to
“recovery”. This is provided by a very small number of
companies, though an inverted pyramid of “middle-men”
has grown up to take their cut, and pass the job on. Recently
I had to recover vital data lost on a broken drive. The
“recovery process” involved my paying for a brand new
identical drive, which was then used to replace everything
but the data-containing disc itself , and allow extraction
of the required content. Note the method! No detailed and
skilled testing and diagnosis was involved, with a single or
small number of replacement parts bringing the disc back
up to a fully working state. No, that would be too time
consuming, and involve too little profit. A whole new drive
was “necessary”, and the recovery process was simple and
quick! The cost of recovery amounted to enough to buy
two complete, and brand new computers. The process
involved paying a firm in the USA, though I had contracted
one in London to do it (which turned out to be just an
office with a couple of employees). The point I suppose
I am making here is that the same philosophy pervades
all sides of Information Technology these days. Does my
experience with the defunct drive demonstrate this? Well,
if we extrapolate the “sequence-of-actions” methodology
to repair, I think it does. That is, if real understanding is

replaced by recipes, then the shortest (and most lucrative)
sequence must be “chuck-it and install a new one”. I’m
afraid any hope that a philosophy akin to classic car
restoration might occur is impossible here. No one wants
to restore an ailing computer to its old fashioned, snail-
paced perfection. I get monthly missives from a variety
of sources invariably informing me of significant cuts in
hardware prices.

Aside: A supporting anecdote is worth inserting here.
In 1989 I authored a multimedia product for teaching
Dance using a Philips Laser Disc system, and a BBC B
microcomputer. The system handled full screen, full
motion (25 frames a second) video, with finger tip control
of pause, play, slow motion, step forwards and backwards,
and immediate random access to any part of the video
sequence. It did the jobrequired perfectly. YET, within a
short period the Laser Disc technology was dumped, and
replaced with CDi (supposed to be better, but is wasn’t!)
The computer was quickly super-ceded with faster cheaper
models, BUT most of the features that made our original
system, and National Award winner, were lost.- YES,
LOST! The new alternatives did not provide them. New
projects had to compromise – they were simply not as
good as the original, because the essential functionality
required in studying detailed and expressive movement
had been excluded. In fact, I have had to wait 13 years
until the “requirements of the Internet forced the industry
to return the functionality that I required, though it has to be
said that doing that was not their intention. Other different
motives had forced the provision. The gap was from 1989
“The Dance Disc” until 2003 “Motifs for s Solo Dancer”
without access to essential video multimedia facilities
(such as cheap systems for dynamic/animated overlays).

JS (2003)

After some 10 years of writing, and the last 6 of those
full time, I have found it unavoidable to have to address
a whole extended raft of areas, which not only relate with
one another, but also actually mutually determine one
another, to a remarkable degree.

To be a pure specialist makes the solving of many problems
virtually impossible! And the reasons are obvious! Strict
limitation to fairly narrow areas of study, and most
particularly when what is actually studied is in a severely
controlled and constrained area too, always and inevitably
simplifies the “seen” realities into purely abstracted forms.
We don’t see unfettered Reality as it actually is, but a very
special “purified” reflection of it. So, the tasks that therefore
present themselves may well be much more easily tackled,
but always at the cost of losing any really comprehensive
principles. They are no longer available!

The imposition of both restricted local principles and
contexts, along with such narrowly constrained Domains
of study is always a debilitating result when it comes to
both origins and process. We are effectively slowing down
the action dramatically, and then studying a “still” of what
we see! Consequently, we not only restrict our study to
very limited areas, but also invariably assume a kind of
stability in what we study.

And each specialist area also quickly accumulates its own
coherent set of things studied and theories extracted: they
are “true”, but only of the prepared and constrained area.
And when specialists from several areas come together to
crack an evidently cross-discipline problem, they invariably
fail, because each side reformulates the problem in terms
of their own limited set of ideas and methods, and the
opposing purposes of the various groups do not produce
anything that transcends these divisions. How could they?
Indeed, if there is any movement it is merely to occupy
the more peripheral areas of their own dependable
realms, without in any way challenging the founding and
determining principles on which they resolutely continue
to stand. Indeed, in many such attempted collaborations,
the emerging dominant discipline in the given context
invariably takes over, and the objectives of the perceived
junior partner are almost entirely lost.

Now, the reader may ask, with justice, on what evidence
were these generalisations revealed to the writer of this
paper, and the answer is perhaps surprising.

For an important decade I decided to dedicate myself and
my acquired skills and understanding in Computing to my
many research colleagues in other disciplines, who were
clearly going to benefit from the aid that computer control
could deliver to their many difficult areas of research.

It soon became crystal clear that if I was to really assist,
I could not merely parachute-in with my panoply of
general computer skills, and quickly solve their problems
in my own discipline’s terms. On the contrary, the only
contribution that I could make was if I were to immerse
myself as deeply as I could into their discipline and their
objectives. Only if I were directly contributing to what they
considered vital would I be doing anything worthwhile.
Certainly I was not a visiting master of unusual skills,
directly applicable to all disciplines no matter how diverse.
Instead, as I originally found myself, I was a bearer of
many techniques looking for an appropriate application. In
other words no use whatsoever!

So, in subordinating myself to the new disciplines aims,
I soon realised that absolutely nothing appropriate yet
existed for the problem presented. I could see possibilities,
but it was clear that force fitting their problems into
inappropriate vehicles would be worse then useless. I
had, with my colleagues as directors, to begin to answer
their needs using what I could already do. It was not a
one-size-and-type-fits all situation by any means. I had
to re-create known applications by tailor fitting them to
their needs entirely. They did not have to learn my area:
I had to learn theirs! And, with the systems I produced,
they had to be able to use in their own well-established
terms – but better and quicker! Indeed, my main task was
to constantly suppress my own within-discipline delights
(in my specialism) and instead what I knew and could use
ONLY as a means of empowering my different discipline
colleagues.

Slowly but surely, significant contributions began to
emerge, and indeed joint papers with the other discipline
experts, enhanced both our statuses within our individual
areas. Soon, all collaborations started to produce these
joint papers, and the institution began to attain a significant
esteem world wide for its original (and very quick)
contributions in a wide variety of areas.

At first the disciplines involved were not a million miles
from my already wide range of specialisms. I was already
a mathematician, a physicist, a biologist, a sculptor and a
computer scientist, as well as having serious interests in
other areas, so I did have a good start. But, nevertheless, the
above principle of subordination to the requiring discipline
experts applied in all the areas of collaboration, which
soon included Mathematics, Taxonomy in Invertebrates,
Mechanical Engineering Test Rigs with computer control &
robotic measuring devices, Medical Treatment Techniques
(radioactive anti cancer treatments), Optometrics, Eye
Defect diagnosis (colour blindness) and even an original
computerisation of a Gas-Liquid Chromatograph.

Too Many Notes…

But the major breakthrough came in the most unlikely
of all collaborations. In a new post, I looked around for
similar collaborative research, and found the best possible
application in Dance Education.

Most of my earlier efforts had involved Computers-
in-Control, so instead of the usual areas of computer
applications, where I concentrated upon wedding
computers to complex kit, and thereby attaining all the
merits of Computer Programming to such equipment, I
had to consider a very different approach.

So in Dance, the obvious immediate demand was for
perfect and flexible access to, and control of Dance
video footage. My dance teacher collaborator and I
began to criticise tape-based resources, both from these
aspects and from the choices in what had been recorded.
“Entertainment videos” were the only educational sources
available, and they were frequently useless in conveying
exactly what the dancers were doing. We therefore not
only added immaculate control and manipulation via
computer control of video discs (at first with Laser Disc,
but later all succeeding delivery methods), but also added
multiple cameras to capture otherwise unseen parts of a
movement, and also to highlight details. We very early on
synchronised alternative views of the same movement, so
that they could be delivered in synch and simultaneously
on screen for study. But, it soon became evident that we
could also supply notation, both Benesh and Labanotation
– on screen and synchronised to the action. But, we, in
addition, began to divide all pieces into phases, sub-
phases and even individual movements, all of which were
identified by naming them (often with descriptive phrases).
We then represented each subdivision by a rectangle (with
its length determined by its duration), and delivered these
as a mapping of the whole piece. They could each in turn
light up in synchrony as the dance progressed, or could be
used as a means of precise access to a required interlude.
All of this and many others (with which I wont burden
the reader with here), transformed the use of video footage
in Dance Teaching, and the most important aspect has not
even be described as yet.

The control of the video resources was immaculate. From
the outset we allowed full speed, slow motion, forwards
or backwards, frame-by-frame stepping through, local
interlude review systems, looping around a fragment, and
intuitive switches between viewing modes, where detail
pieces, and overall views, could be seen simultaneously
and in perfect synch. The concentration was on making
the use of these facilities as easy and intuitive as possible,
and to see a fine dance teacher’s using of these resources
was always a joy to behold. We totally rejected the usual
Programmed Learning techniques with all its many almost
totally insurmountable difficulties, and instead delivered
Resource Based Teaching Materials to be used in whatever
way the teacher required.

In a test run for a GCSE exam on performing a given Test
Piece, our separate (non examined) group did incomparably
better than the usually equipped and normally taught
participants. We were obviously working in the right
direction.

But, returning to the main purpose of this paper, when
considering the necessary revolution in scientific
assumptions, principles and methods, the range of areas
requiring total overhaul is both wide and deep, and no
single discipline would ever deliver sufficient to enable a
single comprehensive and totally coherent approach.
It would have to be not only inter-disciplinary (writ
very large), but even that could never be sufficient. For
the gaps between the Sciences are clearly unbridgeable
using current ideas and methods. The transition between
disciplines, though man-devised, are even more a feature
of the bases on which we continue to address Reality.
They simply can never cope with creative, qualitative
developments. And this means that what is crucial is not
the usual type of revision as has occurred in the Sciences
in the past. It will not be about transitions between such
eternal categories: it will be about the emergence of the
wholly New-creations, which cannot be logically derived
from prior circumstances. The process of Real Emergence
is a very different thing, and one that our misplaced
assumptions and principles just cannot deal with.

So, perhaps surprisingly, the most important area will have
to be in Philosophy, and in the crucial area of Form, we
would have to primarily address significant Qualitative
Change. Indeed, the almost never studied Emergences
would certainly be by far the most important area. Indeed,
the area of Emergences as studied by Hegel and Marx,
would need to be applied within the regularly occurring
alternation between long periods of Stability, the short
interludes of Emergent Events comprising first a total
dissociation of a prior Stability into something approaching
almost complete chaos, then on into the remarkable Middle
Phase, wherein both the Second Law of Thermodynamics
and the very rarely observed opposite Law of Creative
Constructive Order would have to be very deeply studied
for many different areas, including most importantly
Cosmology and the Creation and Evolution of Life on
Earth, as well as Social Revolution, the First Appearance
of Human Consciousness, and even Thought itself.

But, though clearly not personally adequately equipped for
such a task, a start has to be made. The current persisting
crisis in World Capitalism and the ever spreading tide of the
Arab Spring, not to mention the increasing interventions
in more and more countries by the leading Capitalist
powers, make this worked increasingly urgent. History has
demonstrated what happens in such circumstances.

Now, various areas have already been undertaken over
the last decade, which will certainly provide the next
initial steps in the right direction. I will, no doubt, be

severely criticised from the positions of many un-included
specialisms, but I’m afraid vested interests are precisely
what is NOT needed here. If you disagree, then you must
make your contribution. Purely negative or current position-
defending criticisms will be responded to mercilessly. The
task is no longer defence, but to participate in the necessary
Revolution.

Though not directly concerned with Programming
Languages, there has to be a final assessment as to just
how the prevailing principles of the Society in which
we live, have strongly diverted any truly revolutionary
developments in I.T. Research. It, of course, could not
be a general and comprehensive account, but even within
the recent experiences of this researcher, there has been
sufficient to demonstrate such effects very clearly.

The author’s long experience of work concerning Dance
and Multimedia has already been mentioned elsewhere,
but the gains made in that area, also had much wider
implications. For to get anywhere a great deal of research
had to be addressed concerning how movement should be
accurately and appropriately captured via both video and
film. And from this research, a whole host of entirely new
techniques had to be invented to actually deliver all that
was needed with accuracy and sensitivity, particularly in
crucially expressive movements. And the contrast with
stills being used inadequately to illustrate the articulations
not only within given motifs, but also and vitally also
between them in developing meaningful choreography.

The potential spin-offs in all movement-involved areas
(such as most Sports) were evident to the team from the
start (indeed, it was in that area that the original research
was conceived of, but the most demanding area was
certainly Dance, and there was a world class teacher, who
was immediately interested in what was being proposed)
So, both before and after the considerable work involving
Dance, approaches were made and even demonstrations
authored, to present to Cricket, Golf, Tennis, Diving,
Gymnastics, and several other evident areas where the
developed method could be extremely useful.

Indeed, the crucial turning point was in the publication of
the 3-disc pack Choreographic Outcomes in 2005, which
was brought to fruition in the following dance performance
disc Vocalise. [All of these, plus another 10 titles, were
published by Bedford Interactive Productions, following
detailed researches by Bedford Interactive Research over
the previous 15 years]

What was finally achieved in the ForMotion system was
the simultaneous and synchronised appearance, on-screen,
of different views of the same section of the Dance,
under a single joint set of controls. A wide set of views
to be switched between were available, so that particular
interludes that required a different current pair of views
could be easily switched to. In addition, more sophisticated
features were made available such as to allow repeated
looping around a movement or phrase. Perhaps the most
powerful extra feature was that which allowed extractions
to be made from still frames to enable animated overlays
to be constructed, that could be applied back over the
moving video, and synchronised to it. And both these were
manipulatable jointly by all the usual controls.

Though the achievements in these two publications are
now 6 years old, they are still far in advance of the overlays
and techniques used in Cricket (as in the current Indian
Premier League). The point of this brief postscript is that,
in spite of these admirable and professional gains, NO
Sport wanted to know, and the provision of presentations
to experts in the I.T. field led to NO Company who wanted
to implement such facilities as part of their multimedia
Authoring Packages.

Profit was the evident primary motive with the companies,
and jobs for ex-sport people were the motive in all the
Sports we approached. It seems that bigger motivations
than excellence dominate not only Society at large, but the
many disciplines within it too.

Postscript: Diversionary Motives?

www.e-journal.org.uk

http://youtu.be/AW9wituu1-I

